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Abstract. We have defined analogues of the surface and layer susceptibilities of a semi- 
infinite magnetic system for the self-avoiding walk model of a polymer attached to a 
surface. Surface scaling relations between exponents appearing in the magnetic problem, 
as well as a recent renormalisation group exponent relationship, should apply to the 
self-avoiding walk case and we have generated extensive series expansions of the 
analogues of these susceptibilities for the square and simple cubic lattices. Our analyses of 
these series show that surface scaling holds for the self-avoiding walk problem in both two 
and three dimensions but that the renormalisation group argument gives incorrect values 
of the exponents in two dimensions. 

1. Introduction 

Recent interest in the excluded volume effect in polymer adsorption has resulted in a 
number of investigations of the properties of self-avoiding walks attached to a plane 
surface. One of the questions which has attracted attention is how the restriction of 
being attached to a surface in various ways will affect the asymptotic behaviour of the 
number of distinct self-avoiding walks. To be specific, consider self-avoiding walks on 
the cubic lattice confined to a half-space by a surface plane (z = 0) which we shall take 
to be a square lattice. Let c;') be the number (per site of the square lattice) of n-step 
self-avoiding walks which have their first vertex in this plane, and which have no 
vertices with negative z coordinate, and c(n*') be the corresponding number which 
have both vertices of unit degree in this plane and no vertices with negative z 
coordinate. (These quantities appear in, e.g., Silberberg's (1967) treatment of polymer 
adsorption.) If cn is the number (per site of the cubic lattice) of self-avoiding n-step 
walks on the cubic lattice, Hammersley and Morton (1954) showed that the connec- 
tive constant 

lim n-l In cn = In p (1.1) 
n-w 
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exists. Recently Whittington (1975) showed that 

lim n-l In c(nl) = lim n-l In cf*') = In p 
n-m n+m 

so that the lattice has the same effective coordination number (p) for these restricted 
walks as for unrestricted self-avoiding walks. 

There is very good numerical evidence that 

cn-ny-l CL n (1.3) 
where y depends only on the dimensionality of the lattice, and it is reasonable to 
assume a similar n dependence for c(n) and c:'~') so that 

n (1.4) c ( l ) , n ~ l - l  n 
CL 

Assuming these asymptotic forms, Middlemiss and Whittington (1976) showed that 

y14(y+1) .  (1.6) 
The value of y is now well established to be $ in two dimensions, in three dimensions 
and 1 in four or higher dimensions (see, e.g., Domb 1970). There have been a number 
of attempts to estimate y1 in three dimensions, with estimates ranging from 0.68 to 
0.715 (Lax 1974, Mark e taf  1975, Middlemiss and Whittington 1976, Ma et a1 1977) 
and there is a single estimate of y11 for the tetrahedral lattice (Lax 1974). There do 
not appear to be any estimates for either exponent in two dimensions. 

In this paper we report series for c(nl) and c(n19') for the square and cubic lattices and 
form estimates of y1 and y11. By means of the zero-spin-component limit we make 
contact with a surface scaling relation between these and other exponents and with a 
recent renormalisation group prediction of Bray and Moore (1977). 

2. The zero-component limit for semi-infinite systems 

The D + 0 limit of D-component spin systems has been discussed by several authors, 
since de Gennes (1972) originally observed that the polymer problem could be 
approached in this way. Of these treatments one of the simplest is that due to Sarma, 
which appears in an appendix to Daoud et a1 (1975). 

Consider a system of D-component spins 

ai =(U:; a = 1 , .  . . , D )  (2.1) 
of fixed length 

located on the sites i of a &dimensional lattice. We take the Hamiltonian to be 

- B H = K  C U ~ . U ~ + L C U ~ ,  
( i i )  i 

(2.3) 

where the first sum runs over all nearest-neighbour bonds of the lattice and the second 
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over all sites. Note that the magnetic field is taken to be in the direction '1' of spin 
space. Let 

m ( K , L ) = ( a ! )  (2.4) 

be the expectation value of the component of any spin parallel to the magnetic field L, 
then the zero-field susceptibility 

where the subscript 0 indicates that the expectation value is to be taken with respect to 
the Hamiltonian (2.3) with L = 0. 

Sarma then considered the diagrammatic expansion of (arat)~ in powers of K and 
showed very directly that in the limit D + 0 the only diagrams which contributed at 
order K" are self-avoiding walks of n steps linking sites i and j .  Hence he obtained 
the result that 

a0 

lim x ( K ;  D )  = C ( K )  = 1 c,,K", CO= 1,  (2.6) 
D-0 n - 0  

where C ( K )  is the generating function for n-step walks. The asymptotic behaviour 
(1.3) then implies that C ( K )  has a singularity at K = K, = k-l of the form 

C(K)-A(l -pK)-", (2.7) 

analogous to the singularity in the susceptibility. 
To discuss the problem of a self-avoiding walk near an interface, we consider the 

same magnetic model on a &dimensional half-space bounded by a free surface, and 
allow an additional magnetic field L 1  (again in the '1' direction of spin space) to couple 
to spins in the surface layer. Let i denote any surface site and define 

m l ( K ; L , L 1 ) = ( o f ) .  (2.8) 

Two different surface susceptibilities can now be defined (Binder and Hohenberg 
1972, Barber 1973) by 

Ll = 0) ,yl(K; D)= lim 
L-PO 

and 

From these definitions, it is straightforward to show that 

where the sum runs over all sites of the half-space and 

(2.10) 

(2.1 1)  

(2.12) 

where the sum runs only over surface sites. 
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Following Sarma’s arguments, we expand both x1 and x11 as a diagrammatic 
expansion in K. In the limit D + 0 we again find that the only diagrams at order K ”  
which survive are self-avoiding walks of n steps linking sites i and j .  Hence we 
conclude that 

lim x1(K; D)= Cl(K), (2.13) 
D-0 

where Cl(K) is the generating function for c;’), 

C1(K)= C;l’K”. 
n 20 

(2.14) 

Similarly in the case of the diagrams arising from xll, which have their last vertex 
in the surface plane, we have 

lim x11(K; D)= Cll(K), (2.15) 
D-0 

with CI1(K) defined by 

(2.16) 

The required indices y1 and yll as defined in (1.4) and (1.5) are now seen, via 
(2.15) and (2.16), to be analogous to the critical exponents of x1 and xll at the bulk 
critical temperature K,. The problem of critical phenomena in semi-infinite systems 
has, however, been studied in considerable detail in recent years. In particular, this 
work has established, to a large degree, the validity of the scaling theories of Barber 
(1973), Fisher (1973) and Binder and Hohenberg (1972). 

According to this theory, all surface exponents can be expressed in terms of the 
bulk exponents and a new surface gap exponent A1 which scales the surface magnetic 
field. Eliminating Al yields relations between the surface exponents. In particular, y1 
and yll are related through 

(2.17) 

where y and v are the exponents describing the divergence of the bulk susceptibility 
and correlation length respectively. In the limit D + 0, these exponents correspond 
(de Gennes 1972) to the exponent y defined in (1.3) and the exponent (v) characteris- 
ing the root-mean-square end-to-end length of a self-avoiding walk 

(2.18) 

Although scaling gives rise to relationships between these exponents, it does not 
yield independent estimates of either y1 or yll. However, Bray and Moore (1977) 
have recently given a renormalisation group argument which predicts that 

271 - y11= y + 

R, = (R;)”* - n ”. 

y11=v-1. 

Then (2.17) and (2.19) imply that 

(2.19) 

y1= v +3(r - 1). (2.20) 
Using the generally accepted values for y and v, that is, in two dimensions y = 4 and 
v = a and in three dimensions y = 2 and v = $, these relations given y1 = 0.916 and 
y11= -0.25 in two dimensions, and y1 = 0.683 and yll = -0.4 in three dimensions. 

3 
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3. Series analysis 

For the square lattice the exact values of c(nl) and c(nl*l) which we have obtained are 
given in table 1 .  For the cubic lattice, the values of c:) for n 13 have been given by 
Middlemiss and Whittington (1976) and we have obtained the next term in this series, 
as well as the first fourteen terms in the c(,*l)  series. For completeness we give all the 
known terms in table 1 .  

Table 1. Numbers of restricted self-avoiding walks. 

Square lattice Cubic lattice 

n c(l.l) 
n 

(1.1) 
C" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 
3 
7 

19 
49 

131 
339 
899 

2345 
6199 

16225 
42811 

112285 
29605 1 
77741 1 

2049025 
5384855 

14 190509 
37313977 
98324565 

258654441 
681552747 

1 
2 
2 
4 
8 

20 
40 

100 
216 
548 

1224 
3112 
7148 

18228 
42696 

109148 
259520 
664868 

1599448 
4105276 
9969396 

25630164 
62724196 

161490168 

1 
5 

21 
93 

409 
1853 
8333 

37965 
172265 
787557 

3593465 
16477845 
75481105 

346960613 
1593924045 

1 
4 

12 
40 

136 
528 

2032 
8344 

33576 
140912 
582088 

2482240 
1045 1064 
45 101536 

192563128 

We first attempt to form direct estimates of y1 and yl l  for both lattices. Because of 
the odd-even alternation in the ratios we have used the Euler transformation z = 
2x/(1 f p x )  to map the singularity at x = - 1 / p  (see, e.g., Guttmann and Whittington 
1978) in the generating function, to infinity, leaving the singularity at x = 1 / p  
unchanged. Using the accepted values of p (2.6386 for the square lattice and 4.6835 
for the cubic lattice) we have formed ratio estimates, such as 

( 3 . 1 )  
and extrapolated these using standard Neville table methods (see, e.g., Gaunt and 
Guttmann 1974). Typical results for y1 for the square lattice are given in table 2 .  
These suggest 

0.945 f 0.005 (3.2) 



1838 M N Barber et a1 

Table 2. Ratio estimates of 71 - 1 for the Euler transformed series on the square lattice. 
a,, are estimates from ratios of adjacent members, a!,’) are the linear extrapolants 
a!,*’ = M,, - ( n  - l)~,,-~ and a!,,) quadratic extrapolants. 

n an x 10’ a:) x 10’ ai2) x lo2 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

-2.3474 
-2.5585 
-2.7393 
-2,8879 
-34099 
-3.1129 
-3.2028 
-3.2841 
-3,3591 
-3.4293 
-3.4953 
-3.5574 

-4.3281 
-4.6686 
-4.7286 
-4.6706 
-4.5968 
-4.5540 
-4.5525 
-4.5840 
-4.6347 
-4.6923 
-4.7486 
-4.7995 

-7.5922 
-6.2012 
-5.0284 
-4.3517 
-4.1536 
-4.2760 
-4.5422 
-4.8203 
-5.0414 
-5,1816 
-5.2551 
-5.2829 

and are consistent with ratio estimates on the untransformed series and with the 
results of a Pade analysis. 

For yll on the square lattice, the results of a ratio analysis on the transformed 
series are given in table 3. The linear extrapolants suggest that yll d -0-16 and the 
quadratic extrapolants suggest yll -0.20. Analysis of the untransformed series 
suggests a value close to -0.18 and we take as our final estimate 

(3.3) 
+0.03 

711 = -0*19-0.0z. 

Using these estimates, 

Table 3. Ratio estimate for a = yll - 1 for the square lattice. an are direct ratio estimates 
from the Euler transformed series and a!,’) and ai2) are their linear and quadratic 
extrapoiants. en are the successive averages of the linear extrapolants of alternate direct 
ratio estimates on the untransformed series. 

n 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

-0.8257 
-0.8431 
-0.86 17 
-0.8794 
-0.8953 
-0.9095 
-0.9222 
-0.9338 
-0,9443 
-0.9543 
-0.9636 
-0.9724 
-0,9806 
-0.9883 

-0.9377 
-1.0173 
-1.0663 
- 1.091 5 
- 1 *lo28 
- 1.1084 
-1.1129 
-1.1185 
-1,1254 
-1,1329 
-1,1403 
-1,1470 
-1- 1527 
- 1.1573 

- 1 * 3601 
-1.3757 
-1.3110 
-1.2302 
-1.1709 
-1.1442 
-1.1447 
- 1 1605 
-1.1802 
- 1 * 1967 
-1.2068 
-1.2107 
-1,2098 
-1.2063 

-1.0707 
-1,2571 
- 1.1461 
- 1.1389 
- 1 * 1546 
-1.1741 
- 1 * 1606 
-1.1729 
-1.1685 
-1.1810 
-1,1730 
-1.1824 
-1.1765 
-1.1849 
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while the accepted values of y and v and the surface scaling relation (2.17) would give 

y + Y =2*083. (3.5) 

Our results are therefore entirely consistent with surface scaling in two dimensions. 
However, the suggestion of Bray and Moore that y11= Y - 1 would give 711 = -0.25. 
Our results seem to rule out such a value. 

For the cubic lattice the results of a ratio analysis on the transformed series are 
given in table 4. This suggests a value of y1 about equal to, or slightly smaller than, 
0.7, while Pad6 estimates of y1 suggest a value slightly greater than 0.7. However, 
these data are not inconsistent with a value as low as 0.683 which is obtained from a 
combination of surface scaling and the Bray and Moore result, equation (2.20). Our 
final estimate is y1 = 0.70*0-02. 

Table 4. Ratio estimates of y1 - 1 for the Euler transformed series on the cubic lattice. a, 
are estimates from ratios of adjacent members, a:” are the linear extrapolants a‘,‘) = 
M. -(n - l ) a , - 1  and a‘.” quadratic extrapolants. 

~ 

n 0. 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

-0.1532 
-0,1636 
-0.1732 
-0.1775 
-0.1828 
-0.1879 
-0.1929 
-0.1978 
-0.2026 
-0.2073 

-0.2111 
-0.2158 
-0,2174 
-0.2204 
-0,2259 
-0.2337 
-0,2326 
-0.2518 
-0.2604 
-0.268 1 

-0,2365 
-0.2252 
-0,2214 
-0.2293 
-0.2454 
-0.2647 
-0.2829 
-0.2976 
-0.3079 
-0.3140 

In the case of yll for the cubic lattice an analysis of the untransformed series 
suggests a value somewhat less than -0.3 and this is confirmed by the results on the 
Euler transformed series. Our estimate is yll = -0.35 * 0.05 which just includes the 
value -0.4 given by (2.19) with Y = 5. 

A difficulty with the analysis given above is that there is some uncertainty in the 
values of p and also in the values of y and Y. This can be circumvented, and a direct 
test of the surface scaling relation effected, by noticing that 

3 

so that e,  is independent of the value of p. If we construct the sequence {e,} and 
assume 

e, -n4  (3.7) 

then 4 will be zero if surface scaling is obeyed and we can estimate 4 from the 
sequence {4,}, whose elements are defined by 
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and their linear extrapolants 

4:') = f [ n 4 ,  - ( n  - 2)4n-2]. (3.9)t 

Values of 4, and 4"' are given in tables 5 and 6. It appears that, for the square lattice 
141 < 0.001, while for the cubic lattice 4 = -0.03. That is, the evidence in favour of 
surface scaling is very strong indeed on the square lattice. For the cubic lattice, the 
series is not sufficiently well behaved for a definite conclusion but our data are not 
inconsistent with scaling. 

Table 5. Direct tests of the scaling relations for the square lattice. 

n 4m 4"' x lo2 e, x 10 e'." x 10 

13 
14 
15 
16 
17 
18 
19 
20 

-0.08916 
-0.12835 
-0.07605 
-0.1 1274 
-0.06739 
-0.1001 8 
-0*06009 
-0.09008 

-1.72538 
-0.52944 

0,91292 
-0,34996 
-0.23993 

0.02875 
0.19380 
0.08793 

2.91669 
3.28546 
2,59589 
2.93947 
2.3644 1 
2.67029 
2.17723 
2,45624 

0,84783 
0 * 4 5 5 0 3 
0.51069 
0.51756 
0.62829 
0,51685 
0.58617 
0.52984 

Table 6. Direct tests of the scaling relations for the cubic lattice. 

6 
7 
8 
9 

10 
11 
12 
13 
14 

-0.20263 
-0.21088 
-0.20724 
-0.17748 
-0.16988 
-0.14810 
-0.14745 
-0.13009 
-0.13045 

-0.24459 
-0.33106 
-0.22109 
-0.06058 
-0.02043 
-0.01585 
-0.03530 
-0.03103 
-0.02846 

0,62155 
0.55653 
0.51934 
0.43817 
0.41024 
0.35988 
0,34744 
0.31181 
0.30375 

0.33564 
0.44130 
0.21269 
0.02393 

-0.02616 
0.00754 
0.03346 
0.04743 
0.04163 

It is also possible to construct a similar test of equation (2.9) by noticing that 

(3.10) 

where 0 = yll  - Y + 1. Equation (2.19) would imply that 8 = 0. If we assume the 
accepted values of y(2 in three dimensions and ! in two dimensions) we can form the 
sequence cfn} and use estimators 0, and 0;'' analogous to (3.8) and (3.9). The results 
(tables 5 and 6) suggest 8 = 0.05 f 0-01 for the square lattice. For the cubic lattice, the 
linear extrapolants are quite erratic but it appears that 181 C 0.13 and is probably as 
low as 0.04. These data certainly do not allow us to exclude 8 = 0. 

9 
fn  = nYC1c~**" /Rncn - n 

t The ratios and linear extrapolants of alternate terms have been used in order to reduce the effect of the 
singularity on the negative real axis (Guttmann and Whittington 1978), as is standard practice (Gaunt and 
Guttmann 1974). 
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4. Discussion 

There have been several previous estimates of y1 for a variety of three-dimensional 
lattices. From a rather short series on the tetrahedral lattice, Lax (1974) suggested 
y1 = 0-68 in excellent agreement with the value 0.683 obtained from equation (2.20), 
and a similar result was also obtained for the four-choice cubic lattice (Mark et a1 
1975). Ma et a1 (1977) considered the face-centred cubic and body-centred cubic 
lattices and estimated y1 = 0.70. These results, together with the results presented 
here, are consistent with equation (2.20) being correct in three dimensions and hence, 
probably, with both surface scaling and equation (2.19) being correct. The only 
previous estimate of yll is also due to Lax (1974) who found yll = -0.56 for the 
tetrahedral lattice. This result disagrees with our estimate for the cubic lattice, and 
also with equation (2.19). The series on which this result was based was both short 
( n  = 14) and has alternate terms equal to zero, so that the series has (effectively) only 
seven available terms. Lax also gives an argument (his appendix A) which leads to 
yll =;: -0-57 in three dimensions. In his notation, it is easy to show that cn = Cn+2 for 
the cubic lattice and except for a constant multiplicative factor, the same result will 
hold for other lattices. Hence c(x) and C(x) must have singularities at the same point 
(e.g., x = 1/p) with the same exponent, in contrast to Lax’s assertion (see his equation 
(A.9) and (A.13)), which is that the exponents differ in general. Lax thus derives a 
scaling relation, y11= v - y, which we believe to be without foundation. 

In two dimensions there are no previous estimates of yll or y l .  Our results 
strongly support the surface scaling relation (2.17) but cast serious doubt on the 
validity of (2.19). 

For magnetic systems, the series expansions of the analogous susceptibilities for 
the Ising model have been obtained by Binder and Hohenberg (1972, 1974). They 
obtained 10 terms on the square lattice and 8 terms on the simple cubic lattice, which, 
as they pointed out, are probably too short for an unequivocal identification of the 
critical exponents y1 and yll.  However, in our case we have more than 20 terms for 
the square lattice and 14 terms for the simple cubic lattice. The extrapolations show 
every sign of having settled down to their asymptotic behaviours, and so we do not 
believe that the results we have obtained, notably the breakdown of the relation 
y11= Y - 1 for the two-dimensional system, can be ascribed to cross-over effects or  
other manifestations of ‘too short’ series. Further, the fact that our independent 
estimates of y1 and 711 satisfy surface scaling also leads us to believe that the estimates 
of y1 and yll are correct. 
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